Fast realistic modeling in bioelectromagnetism using lead-field interpolation.

نویسندگان

  • B Yvert
  • A Crouzeix-Cheylus
  • J Pernier
چکیده

The practical use of realistic models in bioelectromagnetism is limited by the time-consuming amount of numerical calculations. We propose a method leading to much higher speed than currently available, and compatible with any kind of numerical methods (boundary elements (BEM), finite elements, finite differences). Illustrated with the BEM for EEG and MEG, it applies to ECG and MCG as well. The principle is two-fold. First, a Lead-Field matrix is calculated (once for all) for a grid of dipoles covering the brain volume. Second, any forward solution is interpolated from the pre-calculated Lead-Fields corresponding to grid dipoles near the source. Extrapolation is used for shallow sources falling outside the grid. Three interpolation techniques were tested: trilinear, second-order Bézier (Bernstein polynomials), and 3D spline. The trilinear interpolation yielded the highest speed gain, with factors better than x10,000 for a 9,000-triangle BEM model. More accurate results could be obtained with the Bézier interpolation (speed gain approximately 1,000), which, combined with a 8-mm step grid, lead to intrinsic localization and orientation errors of only 0.2 mm and 0.2 degrees. Further improvements in MEG could be obtained by interpolating only the contribution of secondary currents. Cropping grids by removing shallow points lead to a much better estimation of the dipole orientation in EEG than when solving the forward problem classically, providing an efficient alternative to locally refined models. This method would show special usefulness when combining realistic models with stochastic inverse procedures (simulated annealing, genetic algorithms) requiring many forward calculations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Time Resolved Light Propagation Inside a Realistic Human Head Model

Background: Near infrared spectroscopy imaging is one of the new techniques used for investigating structural and functionality of different body tissues. This is done by injecting light into the medium and measuring the photon intensity at the surface of the tissue.Method: In this paper the different medical applications, various imaging and simulation techniques of NIRS imaging is described. ...

متن کامل

An Irregular Lattice Pore Network Model Construction Algorithm

Pore network modeling uses a network of pores connected by throats to model the void space of a porous medium and tries to predict its various characteristics during multiphase flow of various fluids. In most cases, a non-realistic regular lattice of pores is used to model the characteristics of a porous medium. Although some methodologies for extracting geologically realistic irregular net...

متن کامل

Haptic rendering using C1 continuous reconstructed distance fields

Existing haptic rendering algorithms are limited in the complexity of the models that can be simulated realistically without artifacts such as extraneous force discontinuities or pop-through. High haptic update rates for realistic feedback require fast collision detection methods, such as those achievable using distance fields. We introduce an efficient algorithm for reconstructing a C distance...

متن کامل

Fast Image Interpolation for Motion Estimation using Graphics Hardware

Motion estimation and compensation is the key to high quality video coding. Block matching motion estimation is used in most video codecs, including MPEG-2, MPEG-4, H.263 and H.26L. Motion estimation is also a key component in the digital restoration of archived video and for post-production and special effects in the movie industry. Sub-pixel accurate motion vectors can improve the quality of ...

متن کامل

A Novel Toolbox for Generating Realistic Biological Cell Geometries for Electromagnetic Microdosimetry

Researchers in bioelectromagnetics often require realistic tissue, cellular and sub-cellular geometry models for their simulations. However, biological shapes are often extremely irregular, while conventional geometrical modeling tools on the market cannot meet the demand for fast and efficient construction of irregular geometries. We have designed a free, user-friendly tool in MATLAB that comb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human brain mapping

دوره 14 1  شماره 

صفحات  -

تاریخ انتشار 2001